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We present a novel scoring method for de novo interpre-
tation of peptides from tandem mass spectrometry data.
Our scoring method uses a probabilistic network whose
structure reflects the chemical and physical rules that
govern the peptide fragmentation. We use a likelihood
ratio hypothesis test to determine whether the peaks
observed in the mass spectrum are more likely to have
been produced under our fragmentation model than
under a model that treats peaks as random events. We
tested our de novo algorithm PepNovo on ion trap data
and achieved results that are superior to popular de novo
peptide sequencing algorithms. PepNovo can be accessed
via the URL http://www-cse.ucsd.edu/groups/bioinfor-
matics/software.html.

In recent years, tandem mass spectrometry has become a
leading technology responsible for many of the advances in the
field of proteomics.1,2 Samples for mass spectrometry experiments
can represent mixtures of thousands of proteins, some in very
low quantities. These mixtures are treated with proteolytic
enzymes to break the proteins down into short peptides. Each
sample can generate thousands of spectra, with each spectrum
ideally being created by a peptide from one of the proteins in the
organism’s proteome. Performing the task of matching spectra
to peptides manually is very labor intensive, and much research
has been done to automate this process.

The most popular approach to peptide identification was
pioneered by Yates in the early 1990s. In this approach, the mass
spectrum is scored against a database of all candidate peptides
to detect significant matches. Popular algorithms such as Sequest3

and Mascot4 use this approach. Though they offer an automated
high-throughput method for peptide identification, the current
database search techniques do not give a complete solution to
this problem. Database algorithms implicitly assume that the
genome is accurately sequenced, and all protein coding genes
are annotated. The latter condition is hardly ever met due to many
alternatively spliced genes, most of which are not adequately
represented in the existing databases.5 In addition, database search

algorithms may miss the identification of some peptide-spectrum
matches due to limitations of the relatively simple scoring methods
they use. In other instances, matches are missed due to muta-
tions/polymorphysims or the presence of modified amino acids
in the peptide that are not considered by the database search
algorithm (the consideration of many modified amino acids usually
renders database searches prohibitive as far as running time is
concerned).

For the reasons mentioned above, much effort has been
invested into development of another type of algorithms for
identifying peptides, de novo sequencing methods.6-14 With de
novo sequencing, a reconstruction of the original peptide sequence
is done without knowledge of the genomic sequences or even
the organism from which the sample was taken. In addition, the
introduction of modified amino acids into the reconstruction is
usually less prohibitive than it is in database searches. Among
the de novo algorithms being used today are Lutefisk8,11 (a publicly
available de novo tool), Sherenga9 (part of the Spectrum Mill
software suite by Agilent), and Peaks14 (available from Bioinfor-
matics Solutions, Inc.). There is also a variation of the de novo
sequencing, the tag-based methods.15-18 In this hybrid approach,
putative very short peptide sequences (sequence tags) are
recovered from the spectra using de novo methods and are used
to filter the candidate peptides from a database. A review of several
of the common de novo algorithms is given in ref 19.

The goal of a de novo peptide sequencing algorithm is to
sequence the peptide whose fragmentation created the experi-
mental spectrum. A key component in de novo peptide sequencing
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algorithms (as well as database search algorithms) is a scoring
function, which is used to evaluate the matches between candidate
peptides and the given experimental spectrum. Some scoring
methods use the correlation between the observed spectrum and
a theoretical spectrum generated from candidate peptides.3,20 A
second popular approach to scoring is based on assigning
probabilities to the observed fragment peaks. Several different
scoring schemes have been proposed for this purpose.9,21-23

However, most of them are designed specifically for database
search, and their incorporation into de novo algorithms has not
been widely investigated. One noted exception is the scoring
method due to Dancik et al.,9 which is specifically designed for
de novo sequencing of peptides and is implemented in the
Sherenga algorithm. This scoring method employs a likelihood
test that compares between two explanations for the observed
peaks. The first is a statistical model that assumes the peaks are
a result of a peptide’s fragmentation, and the second is a model
that presumes that the peaks were created by a random process
(not governed by fragmentation rules). The Dancik et al. scoring
was further improved by Havilio et al.,22 who introduced a general
framework for designing scoring functions that can incorporate
many experimental observations and prior mass spectrometry
knowledge. Our approach has some similarities to their method,
mainly the possibility to introduce dependencies between different
observations. However, their score is presented solely in the
context of scoring candidate peptides in database searches and
is applicable to a limited set of correlations between fragments.
In our work, we describe several extensions that significantly
improve the performance of the Dancik et al. scoring function.
Other examples of scoring schemes intended for database
searches include the Scope scoring by Bafna and Edwards,21 which
is a probabilistic model for scoring spectra against a peptide
database, which takes into account factors such as fragment ion
probabilities, noisy spectra, and instrument errors. Elias et al.23

employed an intensity-based scoring model that uses decision

trees to determine the probability of observed fragment intensities.
Colinge et al.24 introduced the OLAV family of scoring schemes,
which use probabilistic models and hidden Markov models to
assess the quality of a database match.

This paper is structured as follows. We first introduce the
terminology, along with some basic mass spectrometry concepts.
We then describe our novel scoring method and its application
to ion trap MS/MS data. Following that we present our experi-
mental results.

BACKGROUND AND TERMINOLOGY
In this section, we describe some of the basic concepts used

in this paper.
Fragment Ions. A peptide P is a sequence of n amino acids,

P ) p1p2p3 ... pn, in an alphabet of 20 amino acids, each amino
acid having a mass m(pi). The parent mass of peptide P, is defined
as PM(P) ) ∑i)1

n m(pi) + mass of H2O. Generally, in mass
spectrometry experiments, peptides break along their backbones
between successive amino acids during the stage of collision-
induced dissociation (CID). This results in n + 1 possible cleavage
sites in a peptide (this count includes the empty peptide with mass
0, and the full peptide with mass PM).

A common event in the CID stage is a single cleavage along
the peptide’s backbone. Such a breakage results in a prefix
fragment p1, ..., pi (also called an N-terminal fragment) and suffix
fragment pi+1, ..., pn (also called a C-terminal fragment). Since the
original whole peptide, called the precursor ion, is charged, it is
also possible for its fragments to retain a charge. Such charged
fragments are also called ion fragments, and only they can be
detected by a mass spectrometer. During the fragmentation
process it is common for ion fragments to have neutral losses,
which are chemical groups such as H2O or NH3 that get detached
from the peptide fragments.

Table 1 lists some of the common fragment ions detected in
low-energy ion trap MS/MS, which we chose to include in our
model, along with their offsets from the cleavage site and the
probabilities of detecting them in our data set. In typical ion trap
mass spectra, ion fragment peaks are not detected in the low- and
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Table 1. Fragment Ionsa

prefix fragments suffix fragments

fragment type offsetb probabilityc fragment type offsetb probabilityc

b M + 1 0.83 (0.66) y M + 19 0.87 (0.71)
b - H2O M - 17 0.39 (0.30) y - H2O M + 1 0.26 (0.21)
b - NH3 M - 16 0.36 (0.28) y - NH3 M + 2 0.24 (0.19)
b - H2O - H2O M - 35 0.13 (0.10) y - H2O - H2O M - 17 0.11 (0.09)
b - H2O - NH3 M - 34 0.12 (0.09) y - H2O - NH3 M - 16 0.13 (0.10)
b2+ (M + 2)/2 0.13 (0.08) y2+ (M + 20)/2 0.23 (0.18)
a (b - CO) M - 27 0.34 (0.26)
a - H2O M - 45 0.17 (0.13)
a - NH3 M - 44 0.20 (0.15)

a The value of M used in the table depends on the type of fragment examined. When examining a prefix fragment, M is defined as the mass M
) ∑j)1

i m(pj), and when a suffix fragment is examined, M is defined as the mass M ) ∑j)i+1
n m(pj). b The offsets are rounded to the nearest integer

value. c This is the probability of observing expected fragments that have a mass in the “visible” portions of the spectra (for each spectrum, this
is the range of masses between the peak with the lowest mass and the peak with the highest mass). The probability for all expected fragment ions
(for the whole range of masses) appears in parentheses.

Analytical Chemistry, Vol. 77, No. 4, February 15, 2005 965



high-mass ranges. We therefore define the visible spectrum as
the mass range in which intensity peaks appear, which corre-
sponds to the masses between the spectrum’s peak with the lowest
mass and the spectrum’s peak with the highest mass (in our data
set, the visible range covers 77% of an average spectrum). Table
1 reports the probabilities of detecting fragment ions both in the
visible spectrum range and in the entire spectrum range.

Our data are derived from doubly charged precursor ions, so
the doubly charged ions b2+, y2+ are possible fragments and are
included in our model. The fragments can be classified into two
groups: prefix N-terminal fragments (b- and a-ions and their
derivatives), and suffix C-terminal fragments (y-ions and their
derivatives). If a cleavage of the peptide occurs at mass M between
amino acids i and i + 1, we can define the expected position for
each of the fragment ions according to their offsets that appear
in Table 1.

The mass spectrum data obtained from the mass spectrometer
consist of a list (m1, i1), (m2, i2), ..., (mj, ij), of peak masses and
their corresponding intensities, coupled with the experimental
parent mass. Though the charge of the precursor ion is not always
reported by the mass spectrometer, it can usually be derived from
the data.25 It is more difficult to determine the appropriate charge
z for each peak, and therefore, the recorded masses m1, ..., mj

are in fact the ratios m/z of the fragments. Our training data
consists of labeled spectra (i.e., MS/MS spectra with their known
peptide sequences).

De Novo Peptide Sequencing Problem and Spectrum
Graphs. When the mass spectrometer is given a sample contain-
ing molecules of a peptide P, it fragments them using CID, and
records the observed fragment masses and intensities in a mass
spectrum S. This process can be viewed as drawing the spectrum
S from the space of all mass spectra, according to a complex
probability distribution Prob(S|P), where Prob(S|P) is governed
by many factors such as the chemical composition of P, the mass
spectrometer’s properties, the experimental conditions, etc. The
goal of sequencing algorithms is to find the peptide P that is the
most likely source of S, i.e., the peptide P that maximizes Prob-
(S|P) among all possible peptides. Since the distribution Prob-
(S|P) is not available to us and is too complex to model,
sequencing algorithms resort to using rough approximations in
the form of scoring functions.

The space of all peptides is extremely large, making it
inappropriate for an exhaustive case-by-case analysis. Database
search algorithms reduce the size of the search space, by
restricting their candidate peptides to ones that belong to the set
of proteins present in the database. Most de novo algorithms
restrict their search space to peptides that are paths in a spectrum
graph, rather than all sequences in a database. A spectrum graph9

is a directed acyclic graph; its vertexes correspond to putative
prefix masses (cleavage sites) of the peptide. Two vertexes are
connected by a directed edge from the vertex with the lower mass
to the one with a higher mass if the difference between them
equals the mass of an amino acid. The Sherenga algorithm,9 uses
a spectrum graph to sequence peptides by finding the highest
scoring paths in the graph. The algorithm assumes that there is
a set of k ion fragment types {y, b, y - H2O, ...}, with a set of

corresponding offsets from the cleavage site ∆ ) {δ1, ..., δk}. The
vertexes in the spectrum graph are assigned by creating for each
mass si in the experimental spectrum a set of k vertexes at masses
si + δ1, ..., si + δk. Vertexes si + δj and si′ + δj′ having similar
masses are merged (since it is likely that they are created by
different ion fragments from the same cleavage site). The vertexes
are scored according to a probability-based score that gives
premiums for present fragment ions, and penalties for missing
ones.

Peak Offset Tolerance and Noise. The measurements
reported by mass spectrometers are not always accurate. It is often
the case that fragments are detected at slight offsets from their
theoretical positions. In our scoring scheme, we tolerate offsets
of up to (ε ) 0.5 Da of peak locations from their expected
positions. The intensity of a fragment with expected mass x is
determined by examining the peaks detected in the interval [x -
ε, x + ε] in the spectrum. Using M ) m as a putative cleavage
site in the peptide, the fragment offsets define a set of intervals
or bins Bm ) {[b - ε, b + ε],[y - ε, y + ε], ...}, which corresponds
to the possible locations of the fragment peaks. Each interval in
Bm is centered at its fragment’s expected offset. For example,
assuming ε ) 0.5, we get that the bin for the b-ion is [m + 0.5, m
+ 1.5], the bin for the y-ion is [(PM - 18) - m + 18.5, (PM -
18) - m + 19.5], etc. When examining a cleavage at mass m, our
scoring method requires us to know the intensity levels for each
of the possible fragment ions. We define the vector of ion fragment
intensities IB ) 〈Ib, Iy, ...〉 to be the maximal intensity detected in
each of the fragments’ bins in Bm. If for some fragment bin there
is no peak that falls within it, we assign that bin’s intensity to be
0.

Mass spectra typically contain many peaks for which there is
no interpretation. In fact, in a typical mass spectrum, most of the
peaks are not annotated (though the majority of the high-intensity
peaks usually are). Some of these peaks are not annotated due to
the limitations of our models. For example, they can belong to
rare fragments (like x ions, or a - H2O - H2O, etc.). They can
also be the result of complex events that are not covered by our
model such as fragments from multiple cleavage sites on the same
peptide (internal fragments). Another likely source for unanno-
tated peaks are chemical contaminants and machine error. All
these unannotated peaks are considered noise in the spectrum.
The presence of many noisy peaks makes de novo sequencing
difficult, since the noisy peaks can cause random false matches
with ion fragments. In our data, the probability that a random peak
matches an ion fragment’s position is ∼0.1 (for the visible region
of the spectra). Though it might seem that this means that some
of the low-probability ion fragments mentioned in Table 1 are not
distinguishable from noise (e.g., y - H2O - H2O, b - H2O -
H2O, etc.), this not always the case. As explained below where
the probabilistic network is described, there are certain situations
in which these fragments do contribute to the score, such as when
we consider them in a combination with other ion fragments, or
if they appear in sparse regions of the spectrum.

Discretizing Intensities and Cleavage Positions. Our scor-
ing uses two types of continuous values that need to be trans-
formed into discrete values, which are more convenient to use
with our models. We consider the spectrum peak intensities to
have continuous values; therefore, we experimentally derived

(25) Sadygov, R. G.; Eng, J.; Durr, E.; Saraf, A.; McDonald, H.; MacCoss, M. J.;
Yates, J. R., III. J. Proteome Res. 2002, 1, 211-215.

966 Analytical Chemistry, Vol. 77, No. 4, February 15, 2005



thresholds to transform these intensities into k discrete intensity
levels. Since depending on the experimental conditions, spectra
can have total intensities that span several orders of magnitude,
we assigned the peaks’ relative intensity levels. This is done by
calculating for each spectrum a baseline grass intensity, which
equals the average of the intensities of the weakest 33% of the
peaks in the spectrum. We then divide each peak’s intensity by
the grass level, to determine its normalized intensity. Using the
training data, we experimented with several different numbers of
intensity levels and different threshold values to separate between
intensity levels. Let I denote the normalized intensity level of a
peak; we obtained optimal results using the following four intensity
levels: 0 (zero) is assigned to peaks with I < 0.05, 1 (low) is
assigned to peaks with 0.05 e I < 2 (62% of the peaks in the
training data), 2 (medium) is assigned to peaks with 2 e I < 10
(26% of the peaks), and 3 (high) is assigned to peaks with I g10
(12% of the peaks).

The other type of value discretized in our models is the relative
position of a cleavage site m in a peptide of mass PM. The relative
position is defined as pos(m) ) m/PM. We discretized the values
of pos(m) into k ) 5 equally sized regions labeled 0, ..., k - 1;
i.e., pos(m) ) 0 denotes a cleavage in the first fifth of the peptide
near the N-terminal, pos(m) ) 1 denotes a cleavage in the second
fifth, etc. We added this variable to our model because the
intensity of observed peaks is correlated with the region in the
peptide in which the peaks appear. On average, peaks are stronger
in the center of the peptide and are weak or missing near the
terminal ends.

NEW LIKELIHOOD SCORING METHOD

In this section, we propose a scoring scheme that assigns a
relevance score to peptide prefix masses (which are the vertexes
of the spectrum graph). For each mass m our scoring function
determines by examining the peaks in spectrum S, how likely it
is that there was a cleavage of a peptide at mass m, i.e., that m is
the mass of a prefix of the peptide P that created the spectrum S.

Hypothesis Test. At the heart of our scoring function is a
hypothesis test. Hypothesis tests are used by several existing
scoring functions.9,22-24 Our hypothesis test compares between
two competing hypotheses concerning a spectrum S and a mass
m of a possible cleavage site. The first hypothesis is the CID
hypothesis, which states that m is a genuine cleavage in the
peptide that created S. According to this hypothesis, there are
rules that govern the outcome of a fragmentation. In particular,
there are certain combinations of fragments and intensities that
are more probable than others. We use a probabilistic network
that models these fragmentation rules to determine the probability
PCID(IB|m, S) of detecting an observed set of fragment intensities
IB, given that mass m is a cleavage site in the peptide that created
S. The competing hypothesis is the random peaks hypothesis
(RAND), which assumes that the peaks in the spectrum are
caused by a random process. Thus, the intensities that appear in
IB, which supposedly belong to fragment ions due to a cleavage at
mass m, are in fact only random peaks that happen to fall into
the designated bins. We describe how to compute the probability
PRAND(IB|m, S) in this scenario.

The score given to a mass m and spectrum S is the logarithm
of the likelihood ratio of these two hypotheses,

A positive score in eq 1 means that, according to our models, it
is more likely that the peak intensities IBwere caused by a genuine
cleavage event (the higher the score, the likelier this hypothesis
is, compared to the competing random hypothesis). Likewise, a
negative score means that the observed intensities IBare probably
due to random peaks, and they give no credence to a cleavage at
mass m. We now describe in detail how to compute the prob-
abilities PCID(IB|m, S) and PRAND(IB|m, S), under these two different
hypotheses.

Collision-Induced Dissociation Hypothesis. According to
the CID hypothesis, there are rules that govern the outcome of
the peptide’s fragmentation process in the mass spectrometer.
These rules define which ion fragments and which peak intensities
are more likely to be observed. We chose to include in our CID
model three types of factors that are a result of mass spectrometry
fragmentation rules: (1) dependencies and correlations between
types of fragment ions; (2) the positional influence of the cleavage
site (the influence of the relative region in which the fragmentation
occurs); (3) the influence of the type of amino acids directly
N-terminal and C-terminal to the proposed cleavage site.

At this stage, we restrict our discussion of the scoring method
to include only the first two factors mentioned above. The
incorporation of the effect of the flanking amino acids to the
cleavage site is treated separately in a section below.

Figure 1 illustrates the probabilistic network (described by a
directed acyclic graph) that we use to model the common
fragments resulting from a peptide cleavage. A vertex u in the
graph is called a parent of vertex v if the there is a directed edge
(u, v) in the graph. There are three vertexes in our graph without

Figure 1. Probabilistic network for the CID fragmentation model of
doubly charged tryptic peptides measured in an ion trap mass
spectrometer. Three different types of relations are modeled in this
network: (1) correlations between fragment ions (regular arrows); (2)
dependencies due to the relative position of the cleavage site in the
peptide (dashed arrows); (3) influence of flanking amino acids to the
cleavage site (bold arrows).

Score(m, S) ) log
PCID( IB|m, S)

PRAND( IB|m, S)
(1)
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parents, two which involve the amino acids flanking the cleavage
site (the vertexes N-aa and C-aa), and the vertex pos(m), which
holds the relative region in the peptide in which the cleavage
occurs. All other vertexes are labeled with the fragment types
from Table 1. Each of these vertexes holds a conditional prob-
ability table of the value of the vertex given the values of its
parents. For instance the vertex b holds a table which gives the
probability P(b ) Ib|y ) Iy, pos(m) ) r), where Ib is the intensity
detected for the b-ion, Iy is the intensity detected for the y-ion,
and the cleavage occurred in the peptide at region r. We explain
the method in which we learned the model’s probability tables in
the Experimental Section. After exploring several network con-
figurations, which included different types of fragments, and
various ways to connect between them, we found that the structure
depicted in Figure 1 gives the best results. Note that this structure
reflects fragmentation rules that arise from our training data,
which consists of spectra of doubly charged tryptic peptides
obtained from an ion trap mass spectrometer. Spectra from other
types of mass spectrometers, charge states, or proteolytic enzymes
can lead to significantly different fragmentation rules.

The edges that appear in the graph reflect two types of
dependencies and causal relations (at this stage we ignore edges
emitting from the vertexes N-aa, C-aa). The first type of depend-
encies modeled are the correlations between the intensity levels
of the ion fragments. Though to some extent there is a correlation
between all ion types, some combinations tend to display higher
correlation in their intensities. For instance, the b- and y-ions are
highly correlated. In ion trap data, when a cleavage in a doubly
charged tryptic peptide creates a high-intensity y-ion, there is
usually also a high-intensity b-ion. We model this phenomenon
by adding an edge between the vertex y and the vertex b (the
direction of the edge in this case is arbitrary). The extent of this
dependence can be seen when we examine the probability tables.
For instance, the probability of seeing a strong b-ion in the center
of the peptide, given that there is a strong y-ion, is PCID(Ib ) high|Iy

) high, pos(m) ) 2) ) 0.36, and it drops to 0.03, if instead of the
strong y-ion, a weak y-ion is detected (Iy ) low). This large
difference in probabilities is due to the fact that, in spectra of
tryptic peptides, the y-ions are usually stronger than their b
counterparts.26 It is therefore unlikely to detect a case where the
b-ion is much stronger than the y-ion. Dependencies of this type
were not accounted for in previous de novo scoring models and
adding them to our score led to improved performance. The
complete set of probability tables used in our model can be found
in the Supporting Information.

There are also correlations between the intensities of ion
fragments and their neutral losses. For instance, if we do not
detect a b-ion, we are less likely to detect a b - H2O ion. This is
reflected in the probability tables by the values PCID(Ib-H2O >
zero|Ib ) high) ) 0.496 for detecting a b - H2O ion when a strong
b-ion was also detected, compared to the probability PCID(Ib-H2O

> zero|Ib ) zero) ) 0.242 of detecting a b - H2O ion when no
b-ion was detected. Not all the correlations between ion fragments
have edges in our model’s graph. For instance, a strong y-ion can
indicate that the intensity of other prefix fragments will also be
high (besides the b-ion, which is correlated with y). In this case,

it might be reasonable to add edges from y to other prefix
fragments; however, the information about y can be mediated quite
well by the value of b (since a strong y is likely to be coupled
with a strong b). In the interest of simplifying our model, we chose
not to add those edges.

The second type of dependency modeled in our graph is the
effect of the region in which the cleavage occurs (the vertex pos-
(m)). There are edges from the vertex pos(m) to the vertexes b,
y, a, y2+ and that b2+, because the intensity of these fragments
depends on where in the peptide the cleavage occurred. For
instance, y- and b-ions tend to have higher intensities in the middle
of the peptide, whereas they are hardly detected near its ends.22

a-Ions tend to be detected more when cleavages occur in the first
half of the peptide. Since it is more likely for larger fragments to
retain both charges in doubly charged peptides, the b2+ ions are
observed more often when the cleavage occurs toward the
C-terminal, whereas the y2+ ions are observed more often when
the cleavage is closer to the N-terminal. Of course the cleavage
location also has a strong influence on the rest of the fragment
ions, but for the benefit of a simpler model, we chose to omit
these edges.

The reason it is beneficial to simplify probabilistic networks
becomes clear when we examine how the model complexity is
affected by the addition of an edge. Each additional edge
that points to a vertex adds a dimension to the probability
table of that vertex. Assuming there are x edges entering a
vertex and there are k discrete intensity levels, the size of the
probability table at the vertex is kx+1. As described in the
Experimental Section, we only had a limited number of labeled
spectra to train our model. Therefore, we could not add many
edges between vertexes that describe true dependencies for fear
of complicating our model. When limited amount of data is used
to train a complex model, there is a chance that overfitting will
occur. When this happens, the model’s parameters are too biased
toward fitting the training data and do not generalize well to
accommodate data that are different from the samples in the
training set.

We use the probabilistic network of Figure 1 to compute PCID-
(IB|m, S), the probability of observing ion fragment intensities IB
given that the putative cleavage occurred at mass m in spectra S.
We denote by V ) {b, y, ...} the vertexes in the probabilistic
network, excluding the vertexes pos(m), N-aa and C-aa. For each
vertex v ∈V, π(v) denotes the set of v’s parents in the graph (π-
(v) are the vertexes that have edges pointed from them to v),
and πb(v) denotes the set of values assigned to the vertexes π(v).
PCID(Iv ) i|πb(v) ) {i1, i2, ...}) is the probability of detecting the
intensity i at fragment ion v given the intensities detected at its
parents. According to the properties of this type of probabilistic
network, a vertex v is independent of the other vertexes in the
graph given that the values of its parents are known (this network
is a casual network with all the vertexes instantiated27). This leads
to the following decomposition for the probability of the intensities
IB.

(26) Tabb, D. L.; Smith, L. L.; Breci, L. A.; Wysocki, V. H.; Lin, D.; Yates, J. R.,
III. Anal. Chem. 2003, 75, 1155-1163.

PCID( IB|m, S) ) ∏
v∈V

PCID(Iv|πb(v), m, S) (2)
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Since the values in the conditional probability tables in our
model were derived from true mass spectrometry data and
represent some of the rules governing the fragmentation process,
the probability PCID can help distinguish between likely combina-
tions of ions (that are frequent in real cleavage sites) and unlikely
combinations. For instance, the probability assigned to instances
where both ions and their neutral losses are detected should be
higher than unlikely instances such as ion combinations where
neutral losses are detected without the b- or y-ions registering
any intensity.

The fact that our model considers combinations of ion
fragments makes it possible, in certain situations, for low-
probability fragments to contribute to the scoring. This happens
because our model considers the fragment’s intensity in context
with other fragments and can identify combinations that have a
probability that deviates from the random background probability.
For instance, the average probability of detecting a y - H2O -
H2O ion fragment is 0.11 (see Table 1) and thus should be virtually
indistinguishable from random noise peaks (that have probability
0.1). However, when it is considered together with the y - H2O
fragment, there are combinations for which the probability of
detecting the y - H2O - H2O is higher, for example, P(y - H2O
- H2O ) medium|y - H2O ) high) ) 0.17. Thus, most of the
time, the intensity of y - H2O - H2O does not contribute to the
score, since its probability is similar to the random noise. However,
using our model, we are able to identify the conditions in which
it significantly deviates from the random probability and exploit
these few occasions to our benefit. We demonstrate how using
such low-probability fragment ions improves the performance of
PepNovo in the Experimental section.

Random Peak Hypothesis. The random model assumes that
peaks are distributed according to some simple prior distribution
throughout the spectrum, without there being any special cleavage
sites or fragmentation rules that influence the detection of peaks
at certain offsets. When we observe the intensities of IB from a
cleavage at mass m, any peak matches with fragment bins are
considered to be due to chance. Under this random model, each
peak is distributed independently of the others. Thus, the
probability PRAND(IB|m, S) can be computed as the product of the
probabilities of seeing the individual peaks in their bins.

To compute the probability of randomly seeing a peak with
intensity level t in a bin of width 2ε around mass m′, we use an
empirical estimate of the peak density in the vicinity of m′. This
local density estimation is used because peaks are not distributed
uniformly throughout the spectrum mass range. For instance,
peaks tend to be stronger and denser toward the center of the
spectrum and sparser and weaker near the terminal ends. The
density estimation is done by looking at a window of width w
around the mass m′ and counting how many peaks of each
intensity level i appear in this window. Assuming there are d
different intensity levels, we denote these counts by ni, 1 e i e d.
Figure 2 illustrates such a count.

Let R ) 1 - (2ε/w) be the probability of uniformly selecting
a random location for a single peak in a window w and having it
fall outside a specified bin of width 2ε. The probability that the
highest intensity level for a peak detected in a bin centered at m′

is t g 1, given the peaks counts n1, ..., nd in a window of width w
around m′, is given by the following equation

Equation 3 can be explained as follows. If the maximal intensity
in the bin is t, we want to avoid the case where all the peaks of
intensity t in the window w miss the bin (we do not mind if several
peaks with intensity t or lower happen to also fall in the bin). The
probability that a random placement of all peaks with intensity t
misses the bin is Rnt, so the complimentary event where at least
one peak with intensity t falls in the bin has probability 1 - Rnt.
As for the higher intensity peaks, we want them all to miss the
bin, and the probability that that occurs is R∑i)t+1

d ni. Following this
reasoning, the probability that no peak falls in a bin is given by

Equation 3 together with eq 4 defines a probability density function
for which

We assume that, in the random model, the events of detecting
peaks in bins are independent of each other. Therefore, we can
factor the probability PRAND(IB|m, S) of detecting a combination of
our model’s k fragments’ intensities into the product of the
individual probabilities, as follows

By examining eq 3, we can gain insight on how the random
model helps to balance the effects of noise. When many noisy
peaks are present (typically having low intensity), they can cause
random matches and thus supposedly increase the score for a

(27) Jensen, F. V. Bayesian Networks and Decision Graphs; Springer-Verlag: New
York, 2001.

Figure 2. Window placed around a bin. There are n1 ) 1, n2 ) 4,
and n3 ) 2, peaks of the respective intensity levels in the window.
The designated bin contains a single peak with intensity 2.

PRAND(I ) t|n1, n2, ..., nd) ) (1 - Rnt)‚R∑i)t+1
d ni (3)

PRAND(I ) 0|n1, n2, ..., nd) ) R∑i)1
d ni (4)

∑
i)0

d

PRAND(I ) i|n1, n2, ..., nd) ) 1 (5)

PRAND( IB|m, S) ) ∏
i)1

k

PRAND(Ii|ni1, ni2, ..., nid) (6)
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cleavage site. However, if we look at eq 3, we see that increasing
the peak count for the low-intensity peaks also increases the
probability of detecting such a peak by chance. Since the
probabilities of the random model appear in the denominator of
the score equation (see eq 1), the result is a decrease in the score.
Thus, if an ion fragment is detected in a dense region of the
spectrum, it contributes less to the score compared to the
contribution it would bring had there been only a few peaks in
its vicinity. This correction does not occur when a simple random
model is used, such as the one used by Dancik,9 where the same
constant random probability is used for all regions in the spectrum.

Modeling the Influence of Flanking Amino Acids. Recent
research has uncovered many chemical properties and pathways
that influence the outcome of the CID fragmentation process. It
has been suggested that incorporating such information can
improve scoring function.26,28 A recent scoring function that uses
this type of information obtained high accuracy for database
searches;23 however, incorporating such information into de novo
sequencing algorithms is an open problem.

An amino acid is said to have an N-terminal bias if on average,
the b and y peaks at the cleavage site N-terminal to the amino
acid are stronger than the peaks from the cleavage on its
C-terminal side. Similarly, an amino acid exhibits C-terminal bias
if the average intensity of peaks from the cleavage C-terminal to
the amino acid is stronger than the N-terminal ones. Some of the
prominent amino acid biases and preferred cleavage sites that have
been mentioned in the literature are as follows: (1) N-terminal
bias of proline, glycine, and serine;29,26(2) C-terminal bias of
aspartic acid30 (especially in proteins with no mobile protons31);
(3) influence of histidine on cleavage C-terminal to acidic
residues.32

A qualitative measurement of some of the aforementioned
phenomena is given in refs 26 and 33. Some of these biases are
very strong, for instance the b and y peaks N-terminal to proline
are typically at least 5 times stronger than their C-terminal
counterparts. Adding this information into the model can help to
determine genuine cleavage sites.

We incorporate the amino acid biases into our model by adding
the vertexes N-aa and C-aa (see Figure 1) and adding directed
edges from them to the vertexes b and y. These edges add two
conditioning variables to the conditional probability tables for b
and y. Since there are 20 different amino acids, adding these
variables makes the conditional probability tables for b and y 400
times larger. This large increase in table size requires much more
training data than we have available to us. To reduce the number
of parameters needed to train, we grouped the different amino
acid combinations into 16 equivalence sets. The assignment of
amino acid pairs to equivalence sets is done according to the order
rank of the sets; i.e., any two amino acids are assigned to the

highest ranking set to which they can belong. The equivalence
sets we use are as follows (X denotes any amino acid, we start
our list from the highest ranked set): X-Pro, Pro-X, X-Gly, Gly-X,
X-Arg/Lys, His-X, X-His, Asp/Glu-X, X-Asp/Glu, Ile/Leu/Val-X,
X-Ile/Leu/Val, Ser/Thr-X, X-Ser/Thr, Asn-X, X-Asn, and X-X (any
combination of two amino acids). A table describing this assign-
ment of amino acids to equivalence sets is given in the Supporting
Information. If both amino acids in the pair are either glycine or
proline, we assign the combination to the X-X set (since there is
less cleavage in these cases33). The set’s order was determined
according to the extent each amino acid influences the intensities
of the peaks at a cleavage site and causes a deviation from the
typical cleavage intensities (we determined this based on the
results mentioned in refs 28 and 33). For instance, in most cases,
proline and glycine have a stronger influence than the other amino
acids; therefore, they are placed at the top of the list. Note that,
by using such equivalence sets, we actually model the influence
of only one of the flanking amino acids each time, though it is
usually the dominant one (since the sets with the dominant amino
acids appear higher in our ranking). A more accurate approach
might be to model the contribution of both flanking amino acids;28

however, as mentioned above, this requires a larger training set
than the one that was available to us.

Using the expanded conditional probability tables, we can
replace the probability PCID(IB|m, S) of eq 2 with PCID(IB|m, S, N-aa,
C-aa). Note that adding the conditioning on the N- and C-terminal
amino acids only affects the probabilities of the fragments b and
y. The other fragments’ tables are not affected by this, for instance,
PCID(Iy-H20 ) i1|Iy ) i2, N-aa, C-aa) ) PCID(Iy-H20 ) i1|Iy ) i2).
Furthermore, there is no need to make any changes to the random
model because of the added conditioning on the flanking amino
acids, since it is assumed in that model that the peaks are created
in a random process that is not governed by the fragmentation of
any source peptide.

The addition of the N-aa and C-aa vertexes to our model
changes the way we score vertexes in the spectrum graph. Before
the addition, each vertex in the spectrum graph had a single score.
Now, each vertex can have 16 different scores (for the different
combinations of flanking amino acids). When searching for the
high-scoring path, the de novo algorithm must select for each
vertex its appropriate score, depending on the edges that enter
and exit the vertex.

EXPERIMENTAL SECTION
In this section, we describe how we constructed our experi-

ments. We also provide benchmarks that compare PepNovo with
three existing de novo programs: Sherenga,9 Lutefisk,11 and
Peaks.14

Mass Spectra Data Set. The data set we use is composed of
doubly charged tryptic peptides obtained from low-energy ion trap
LC/MS/MS runs. We limited our experiments to only dealing
with spectra of doubly charged precursor ions since this charge
state is the most common in many mass spectrometry experi-
ments. In total, we obtained 1252 spectra of peptides with unique
sequences which were identified with high confidence by Sequest
(these spectra had Xcorr > 2.5 and came from proteins with
multiple hits). Our data came from two sources, the ISB protein

(28) Schutz, F.; Kapp, E. A.; Simpson, R. J.; Speed, T. P. Biochem. Soc. Trans.
2003, 31, 1479-83.

(29) Berci, L. A.; Tabb, D. L.; Yates, J. R.; Wysocki, V. H. Anal. Chem. 2003,
75, 1963-1971.

(30) Gu, C.; Tsaprailis, G.; Breci, L.; Wysocki, V. H. Anal. Chem. 2000, 72, 5804-
5813.

(31) Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. J. Mass Spectrom.
2000, 35, 1399-1406.

(32) Huang, Y.; Wysocki, V. H.; Tabb, D. L.; Yates, J. R., III. Int. J. Mass Spectrom.
2002, 219, 233-244.

(33) Huang, Y.; Triscari, J. M.; Wysocki, V. H.; Pasa-Tolic, L.; Anderson, G. A.;
Lipton, M. S.; Smith, R. D. J. Am. Chem. Soc. 2004, 126, 3034-3035.
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mixture data set,34 which used an ESI-ITMS mass spectrometer
made by ThermoFinnigan (San Jose, CA), and the Open Pro-
teomics Database (OPD),35 which used a ESI-ion trap Dexa XP
Plus mass spectrometer, also from ThermoFinnigan. Ideally, a
scoring model should be trained using spectra from a single type
of machine. However, to create a sufficiently large training set,
we resorted to using spectra from these two different sources
(although both are ESI-ion trap machines that produced spectra
with similar characteristics).

For our test set, we selected from the data set described above
280 spectra of peptides with a molecular mass of up to 1400 Da
(which corresponds to peptides with 7-16 amino acids, with an
average length of 10.5). The peptide sequence assignments to the
280 spectra were verified by an independent run of Sequest against
a 20 Mb nonredundant protein database with nonspecific digestion.

PepNovo Sequencing Algorithm. In this section, we briefly
describe parameter learning in our models, the construction of
the spectrum graph, and the dynamic programming algorithm for
finding the highest scoring path in the spectrum graph.

Training the Probabilistic Model. After setting aside 280
spectra for a test set, we were left with 972 annotated spectra as
a training set that were used to learn the probability tables. The
tables were filled by counting in the training data the number of
appearances of each possible combination of variables in the table.
Some variable combinations did not appear, resulting in zero
counts. We smoothed these zero counts by adding a small uniform
count to all combinations.

It is worth noting that since the training data we used all came
from the same type of source (all doubly charge tryptic peptides
from ion trap machines), the models that are trained are most
appropriate for spectra from this type of machine. Mass spectra
that are generated under different experimental conditions, for
example, other types of mass spectrometers such as Q-TOF, are
likely to have different fragmentation rules and different prob-
abilities for observing combinations of fragments. It is preferable
to train separate scoring models for different types of data.

Constructing the Spectrum Graph. The vertexes in the
spectrum graph represent possible cleavage sites, and the solution
interpretations correspond to high-scoring paths in the graph. For
this reason, selecting the appropriate number of vertexes for the
spectrum graph is essential for obtaining optimal results. On one
hand, if too few vertexes are selected, many cleavage sites can
be missed, and the graph might contain several disconnected
subpaths of the correct solution. On the other hand, if too many
vertexes are used, this causes many spurious edges, which create
high-scoring incorrect subpaths that add noise, which masks the
correct path.

Our method for determining the graph’s vertexes is as follows.
Given a query spectrum S, we first select part of the peaks in the
spectrum, choosing only the strongest peaks in each region. This
is done by sliding a window of width w across the spectrum and
keeping any peaks that are in the top k peaks, for some window
location. For w ) 56 Da and k ) 3, this selects on average 62
peaks per spectrum, which is a density of 5.2 peaks for every 100
Da. Since the highest peaks in the spectrum tend to be b- and

y-ions, we create vertexes for both of these interpretations: Given
a peak at mass x, we create a vertex at mass m ) x - 1 (by
interpreting the peak as a b-ion) and also create a vertex at mass
m ) PM - x + 1 (by interpreting the peak as a y-ion). To these
vertexes we add the vertexes for mass 0 (the empty peptide), and
mass PM - 18 (which is the mass of the entire peptide). We
merge vertexes that are within 0.5 Da of each other (since they
are likely created from b- and y-ions of the same cleavage site).
When following this procedure, the average number of vertexes
in a spectrum graph for the test set is 110. Note that this method
is different from the method used by Dancik et al., where all peaks
(and all their interpretations) were used to select the vertexes in
the spectrum graph. The edges in the graph are created by
connecting vertexes that have a mass which approximately equals
the mass of an amino acid (we used a tolerance of (0.5 Da).

Scoring vertexes in the spectrum graph is done by taking each
vertex’s mass m and finding the intensities IBof the fragment ions
for a cleavage at mass m in the original spectrum S (containing
all peaks). We then score the vertex according to the log-likelihood
score of eq 1. Note that each vertex has several scores computed
for it according to the different combinations of flanking amino
acids. When performing its search for a high-scoring path, our
search algorithm selects the appropriate score for the vertex,
according to the combination of edges it uses in the path that
goes through that vertex.

It is common in mass spectra for peaks to have isotopic peaks
that appear at increments of 1 Da after the peak. The isotopic
peaks are caused by peptide fragments that contain isotopic atoms
(the most common is isotope 13C, but N, O, and S can also
contribute to this). Isotopic peaks are usually detected for strong
peaks; therefore, it is common for the b- and y-ions to have
additional peaks at offsets of +1 and +2 Da. These isotopic peaks
can create additional vertexes in the spectrum graph that can lead
to sequencing errors. One approach to deal with isotopic peaks
is to remove their vertexes from the graph. This, however, can
lead to the removal of genuine vertexes that were created from
peaks that happen to fall in the isotopic peak positions. Instead of
using this approach, we chose to give vertexes a premium to the
score if their b or y peaks had isotopic peaks ahead of them and
give the vertexes a score penalty if their b or y peaks seemed to
be isotopic peaks themselves (that is, they had strong peaks at
an offset of -1 Da).

A point that needs to be kept in mind when constructing
spectrum graphs is that the experimental parent mass measured
in mass spectra machines is often inaccurate and can thus lead
to mistakes in the de novo sequencing. To solve this problem,
we use the combinatorial parent mass correction procedure from
by Dancik et al.9

Dynamic Programming Algorithm. Once the spectrum
graph is created and scored, we need to find a highest scoring
antisymmetric path in it.9 Since every peak we use from the
spectrum contributes two vertexes to the spectrum graph, we
could end up with symmetric paths that use both vertexes
attributed to a peak. This leads to incorrect interpretations.
Therefore, we restrict our solutions to paths containing at most
one vertex from each of these “forbidden pairs” of vertexes.
Though this problem is generally intractable, the unique structure
of the forbidden pairs in the spectrum graphs leads to a polynomial

(34) Keller, A.; Purvine, S.; Nesvizhskii, A. I.; Stolyar, S.; Goodlett, D. R.; Kolker,
E. OMICS 2002, 6, 207-212.

(35) Prince, J. T.; Carlson, M. W.; Wang, R.; Lu, P.; Marcotte, E. M. Nat.
Biotechnol. In press.
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time algorithm for the antisymmetric path problem.10 To find the
highest scoring path in the graph, we used a dynamic program-
ming algorithm similar to the one due to Chen et al.10,36 that is
modified to take into account the particulars of our scoring
function (see section on constructing the spectrum graph).

Assessing the Efficiency of De Novo Sequencing Algo-
rithms. We desired a metric by which the success of de novo
reconstructions could be evaluated and compared with other
algorithms. The natural parameter we can look at is the prediction
accuracy, which is defined as

However, de novo sequencing algorithms often predict partial,
rather than complete peptides, so a high score on this parameter
can be obtained by only predicting high-scoring short partial
peptides. Usually, this includes the portion in the center of the
peptide that has stronger peaks, while amino acids near the
terminals are ignored. We therefore also look at the capability of
the algorithms to reconstruct correct consecutive subsequences
of amino acids (that appear in the prediction in their expected
position according to the correct peptide). For each prediction
made by the algorithms, we determined the maximal correct
subsequence and tallied the counts for the entire test set. Note
that a predicted amino acid (or subsequence) is considered correct
if its position in the predicted de novo sequence is within 2.5 Da
from its expected position according to the correct sequence. We
use this large margin to account for offsets in amino acid locations
that occur due to both inaccurate peak m/z measurements and
an incorrect parent mass (even after parent mass correction is
used). In addition, we do not make a distinction between the amino
acids leucine and isoleucine (which have identical masses) and
between lysine and glutamine (which have a small difference of
0.04 Da in their masses).

PepNovo Benchmarking. We compared the performance of
PepNovo with the following popular de novo sequencing algo-
rithms: Lutefisk XP v1.0,11 Peaks v2.4,14 and Sherenga9 (which is
included in the Spectrum Mill v3.01 software suite).

We ran the algorithms on each of the 280 test spectra and
kept the highest scoring interpretation they returned. The fol-
lowing parameters and settings were used for this benchmark.
Lutefisk was run with the default parameters for doubly charged
tryptic peptides on ion trap mass spectrometers. Peaks was run

with an error tolerance of 0.6 Da, Trypsin digestion, and treating
Q/K and I/L as identical amino acids. Sherenga was run with
ESI ion trap scoring, minimum vertex score 0, and treating I/L
and Q/K as identical amino acids.

The results of the four de novo algorithms are given in Table
2. PepNovo, Peaks, and Sherenga all achieve results superior to
Lutefisk’s, both in terms of accuracy and in terms of the longest
correct subsequences predicted. As far as the prediction accuracy
is concerned, PepNovo has the highest accuracy even though on
average Sherenga makes shorter predictions and thus has an
advantage since it is making more selective predictions (this
enables it to get a higher accuracy than Peaks). When we examine
the prediction of correct consecutive amino acid sequences, we
see that PepNovo obtained the best results, with Peaks coming
in a close second, especially when the longer subsequences are
concerned.

We also ran additional experiments with deficient versions of
PepNovo, where each variant of the algorithm was lacking one of
the components that are incorporated into the PepNovo scoring
model (e.g., dependencies between fragments, information on
flanking amino acids, intensity thresholds, etc.) The results are
given in the Supporting Information. Each of the tested compo-
nents proved to have a positive influence on PepNovo’s perfor-
mance (since all deficient versions of PepNovo had inferior
success rates). For instance, a version of PepNovo that did not
use information on the flanking amino acids showed a reduction
of 1.6% to the prediction accuracy. It is likely that the improvement
in performance due to adding flanking amino acids to the model
would be greater than 1.6% if more training data were available,
enabling the inclusion of more equivalence sets, possibly to the
degree of having a separate probability table for each pair of
flanking amino acids. The lack of other components in the model,
such not having intensity thresholds or using a simple random
model, caused a larger decrease in the performance (see table in
Supporting Information for more details). We also evaluated our
de novo algorithm with Dancik scoring (which lacks many of
PepNovo’s enhancements) and found that PepNovo’s scoring
performs much better both in terms of the prediction accuracy
(72.7% vs 61.2%) and in terms of the counts of the maximal lengths
of correct subsequences in the predictions.

Future Work. The results obtained for PepNovo demonstrate
the power of our new scoring model, which enabled our algorithm
to outperform popular de novo algorithms. There are several
possibilities for future related work in this area. Our algorithm
can be extended to include modified amino acids in the predicted
peptides. We intend to examine ways to add to our models’(36) Lu, B.; Chen, T. J. Comput. Biol. 2003, 10, 1-12.

Table 2. Comparison of De Novo Peptide Sequencing Algorithmsa

predictions with correct subsequences of length at least x
algorithm

average
accuracy

average
length x ) 3 x ) 4 x ) 5 x ) 6 x ) 7 x ) 8 x ) 9 x ) 10

PepNovo 0.727 10.30 0.946 0.871 0.800 0.654 0.525 0.411 0.271 0.193
Sherenga 0.690 8.65 0.821 0.711 0.564 0.364 0.279 0.207 0.121 0.071
Peaks 0.673 10.32 0.889 0.814 0.689 0.575 0.482 0.371 0.275 0.179
Lutefisk 0.566 8.79 0.661 0.521 0.425 0.339 0.268 0.200 0.104 0.057

a Cumulative results for 280 test spectra: the average accuracy of predicted amino acids, average prediction length, and proportions of predictions
that had a correct subsequence of length at least x, for 3 e x e 10.

prediction accuracy ) number of correct amino acids
number of predicted amino acids

(7)
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additional mass spectrometry “wisdom”, such as the influence of
the amino acid composition on the intensity of the neutral
losses.26,37 We also plan to expand our score models to include
additional charge states (which might require more sophisticated
methods for constructing the spectrum graph) and to create
models for data from additional types of mass spectrometers such
as Q-TOF and additional proteolytic enzymes (which will require
additional annotated training sets).
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